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ABSTRACT 

"._. .... .. . 

This  report  is a description of the  flexible- 
steel-tape  monopole  used by the  Apollo  astronaut  for 
extravehicular-activity  communications.  Antenna 
patterns and voltage-standing-wave-ratio measure- 
ments  have  been  made  at  the NASA Manned Spacecraft 
Center,  including both surface-reflection  effects  and 
free-space  data.  The  antenna  pattern  data  were  taken 
at  frequencies of 259.7,  279.0,  and  296.8  megahertz, 
with  surface-reflection  effects  included. The voltage 
standing-wave  ratios in this  range  were  under 2. 0: 1, 
and  the  gains  with  surface-reflection  effects  and  the 
astronaut  standing  ranged  from  the  worst-case  null 
of -5  decibels at 259.7  megahertz  to +2 decibels  at 
279.0  megahertz,  referenced  to a perfect  isotropic 
level of vertical-linear  polarization. In the  bending- 
over  and lying-down positions,  the  gains  range  from 
-28  to +1 decibels,  referenced  to  an  isotropic  level 
established  in  the  standing  position by substitution of 
a standard-gain  dipole  for  the  astronaut  antenna.  As 
a result, no height-gain  correction  factor  in  the  trans- 
mission  loss is required  in  the  circuit  margin  calcu- 
lations  for  the  bending-over  and  lying-down  positions. 
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PERFORMANCE CHARACTERISTICS OF THE APOLLQ 

ASTRONAUT BACKPACK ANTENNA 

By Jefferson F. Lindsey I11 
Manned Spacecraft  Center 

SUMMARY 

The performance of the  flexible-steel-tape  monopole  used by the Apollo astronaut 
for  extravehicular-activity  communications is described,  based  on  measured  data  taken 
at   the  NASA Manned Spacecraft  Center. Both surface-reflection  effects  and  free-space 
data are included.  The  voltage  standing-wave  ratio is found  to  range  from 1. 08: 1 a t  
279. 0 megahertz  to 1. 8: 1 at 296.8  megahertz.  The  gains  on  the  horizon  with  surface- 
reflection effects range  from a worst-case  null of -5  decibels  at 259. 7 and 296. 8  meg- 
ahertz  to a peak  level of +2 decibels  at  279.0  megahertz,  referenced  to a perfect 
isotropic  level of vertical-linear  polarization. In the  bending-over  and  lying-down 
positions,  the  gains  range  from  -28  to +1 decibels,  referenced  to  the  isotropic  level 
established  in  the  standing  position by substitution of a standard-gain  dipole  for  the 
astronaut  antenna.  As a result, no height-gain  correction  factor  in  the  transmission 
loss is required  in  the  circuit  margin  calculations  for  the  bending-over o r  lying-down 
positions. 

INTRODUCTION 

This  report  is a description of the  performance  and  operation of the  flexible- 
steel-tape  monopole  used by the Apollo astronaut  for  extravehicular-activity  (EVA) 
communications.  Antenna  patterns  and voltage-standing-wave-ratio (VSWR) meas- 
urements  have  been  taken  in  the  very-high-frequency  (vhf)  range  with  the  antenna 
mounted  on  the  backpack.  Patterns with smooth-surface  reflection  effects  and free- 
space  data are included. 

The  blade  monopole  antenna is constructed of flexible  steel  tape  approximately 
10.25  inches  long. The steel  tape is potted  in a 1.25-inch-diameter  cup  with a potting 
compound  having a dielectric  constant of 1. 8 and a loss  factor of less than 0. 015. The 
total  weight of the  antenna,  including  the  cable  and  connector, is 3. 5  ounces. The an- 
tenna  was  developed  and  tested  for  use  on  the Apollo astronaut  backpack  in  June 1966 
by J. F. Lindsey  and G .  H. Nason of the NASA Manned Spacecraft  Center (MSC) and 
is now produced by a subcontractor.  The test conditions,  measured  results,  and  con- 
clusions are discussed. 
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TEST CONDITIONS 

The  test  setup  for  the VSWR measurements is shown  in  figure 1. Standard  mis- 
matches of 1.25: 1 and 1. 75: 1 were  used  to  insure  the  proper  calibration of the  setup. 
The  measurements  were  taken  in a clear area behind  building  14 a t  MSC, using  an  elec- 
trical  mockup of the  backpack.  The VSWR was  measured  at  5-megahertz  intervals in 
the 250- to  310-megahertz  range. The VSWR data  may be used  either  for  free-space 
operations o r  on  the  lunar  surface. 

The  antenna  was  mounted  on  the  oxygen  purge  system (OPS), which is mounted 
on  the  portable  life-support  system (PLSS), as shown  in  figure 2.  This  combination, 
generally  referred  to as the  backpack,  was  mounted  on a live  subject  during  the VSWR 
measurements. 

The  antenna  pattern  measurements  were  taken  on  the MSC ground-reflection 
range.  The  test  setup  with  reflection  effects  included is shown in figure 3. The  three 
operational  frequencies of 259.7, 279. 0, and  296.8  megahertz  were  used. A range 
length of 1000  feet  was  chosen to insure  adequate  simulation of long-range  multipath 
smooth-surface  reflection  effects. With a transmitting  antenna 24 feet  above  the 
ground,  which  corresponds  to  the  lunar-module EVA antenna  and  the  6-foot  height of 
the  astronaut's  backpack,  the  grazing  angle is found  to  be 1. 7". At this  small  grazing 
angle,  the  Fresnel  reflection  coefficient is close  to - 1  for a wide  range of dielectric 
constants (ref. 1) .  For  example, with a dielectric  constant er = 4.  0, the  vertical 
reflection  coefficient is 0.93,  and  with E = 1.4,  the  vertical  reflection  coefficient is r 
0.88. The  dielectric  constants  for  the MSC antenna  range  and  the  lunar  surface are 
believed t o  be  within  this  range (refs. 2 and  3). Also, at   the 1000-foot  range,  the  path 
difference  between  the  direct  and  reflected  wave is found  to  be 4 inches, which is much 
less than a one-half  wavelength;  therefore,  destructive  multipath  smooth-surface re- 
flection  effects  corresponding  to  longer  communication  ranges  do  exist. 

The  transmitting  antenna  was a vertically  polarized  dipole,  the  pattern of which 
closely  approximates the pattern of the  lunar-module  astronaut EVA antenna.  The 
backpack  antenna  was  used  for  receiving,  and  the  gain of the  antenna  was  obtained by 
substitution of a standard-gain  reference  dipole  at  the  6-foot  standing  height.  The  iso- 
tropic  level  was  taken as 2 decibels  below  the  dipole  level.  Measurements were taken 
in  the vhf range  at  259.7, 279. 0, and  296.8  megahertz,  with  the  astronaut  in  the  stand- 
ing,  bending-over,  and  lying-down (face down) positions.  The  isotropic  level es- 
tablished  with  the  reference  dipole  at the 6-foot standing  height  was  used  for  the 
bending-over  and  lying-down  positions;  thus,  circuit  margin  calculations  do  not  need 
to  include a height-gain  correction  factor  for  the  lower  antenna  heights in the  bending- 
over  and lying-down positions. 

For the  free-space  patterns,  the  Ellington  Air  Force  Base  antenna  range  was 
used  with  an  electrical  mockup of an  astronaut. A standard-gain  reference  dipole with 
2 decibels of gain  was  used to establish  the  isotropic  level. 
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MEASURED RESULTS 

The  results  for  the VSWR tests  are shown in figure 4. The  voltage  standing-wave 
ratios at the  operating  frequencies  are  1.6: 1 at 259.7  megahertz,  1.08: 1 at 279.0  meg- 
ahertz,  and  1.71: 1 at 296.8  megahertz.  These  ratios are within  the  normally  specified 
value of 2.0: 1 for  transmitting  antennas.  The VSWR for  operation of the  antenna  on a 
48-inch-diameter  ground  plane is also shown in figure 4. The  48-inch-diameter  ground 
plane is used  for  acceptance  testing at the  subcontractor  facility.  The  resonant 
frequency  on  the  48-inch-diameter  ground  plane is 260 megahertz;  whereas,  on  the 
smaller  backpack  ground  plane,  the  resonant  point is near  278 megahertz.  Before  the 
addition of the  OPS,  the  antenna  was  mounted  on  the  PLSS,  and  the VSWR character is-  
tics  were  better  than  the  measurements  after  the  addition of the  OPS.  The VSWR with 
the  PLSS  mounting  was  1.5: 1 at  259.7  megahertz  and  1.6: 1 at 296.8  megahertz. 

The antenna-pattern-measurement results are tabulated  in  table I. The  coordi- 
nate  system  used  for the patterns is shown in  figure 5, with  variation of 0 f r o m  0" to 
360".  The @ = 0" angle  corresponds  to  the  astronaut  facing  toward  the  lunar  module 
or  another  astronaut. At (9 = go",  the  antenna  gain is defined  with  the  left  shoulder 
toward  the  other  station;  at @ = 180",  the  antenna  gain is defined with the  astronaut 
facing away from  the  other  station;  and  at @ = 270 , the  antenna  gain is defined at   the 
right  shoulder.  For  the  free-space  patterns,  the  elevation  angle 0 varies   f rom 0" 
above  the  astronaut  to  90" on the  horizon  and  to  180"  below  the  astronaut. 

The  patterns  with  surface-reflection  effects  included  are given in figure 6. These 
patterns may  be  used in determining  the  ranges on the  lunar  surface. In the  standing 
position,  the  worst-case  gain is 5 decibels below a perfect  isotropic  level of vertical 
linear polarization.  The  maximum  gain  occurs  at  the  relay  frequency of 279.0  mega- 
her tz  and is found to  be 2 decibels  above  the  reference  isotropic  level.  The  gain  meas- 
urements  taken in the  bending-over  and  lying-down  positions are  referenced  to  the 
isotropic  level  obtained  with  the  reference  dipole  vertically  polarized at the 6-foot 
standing  height;  thus,  for  communications  range m a r g h  calculation,  the  transrnission- 
loss  curve  for a 6-foot  astronaut  antenna  may  be  used  without  any  height-gain  correc- 
tion  factors. In addition, no polarization  loss  factor is required. In the  bending-over 
and  lying-down  positions,  the  maximum  level is 1 decibel  above  the  reference  isotropic 
level,  and  the  worst-case  level is 28 decibels below the  reference  isotropic  level.  The 
average  levels  are  those  obtained  for  about one-half of the  pattern. 

The  free-space  patterns are shown  in  figure 7. These  patterns  may  be  used  for 
antenna-performance  extravehicular  activities in space.  The  patterns are referenced 
to  an  isotropic  level of vertical-linear  polarization;  thus,  polarization  loss  factors are 
needed  for  circuit  margin  calculations.  The  relatively  high  level of +1 decibel  obtained 
in the  bending-over  and  lying-down  positions  can  be  explained by examining  the free- 
space  patterns.  The  maximum  gain  occurs  around 8 = 160",  near  the  astronaut's  feet. 
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CONCLUDING REMARKS 

Antenna  pattern data have  been  taken  with  surface-reflection  effects at the  three 
operational  frequencies of 259.7,  279.0,  and  296.8  megahertz  on  the  Apollo  astronaut 
backpack  antenna.  The  voltage  standing-wave  ratios in this  frequency  range  were 
under  2.0: 1 at each  frequency,  and  the  gains  with  surface-reflection  effects  and  the 
astronaut  standing  ranged  between  -5  and +2 decibels,  referenced  to a perfect  isotropic 
level of vertical-linear  polarization. In the  bending-over  and lying-down positions,  the 
gains  range  from  -28 to +1 decibels,  referenced  to  an  isotropic  level  established in the 
standing  position by substitution of a standard-gain  dipole  for  the  astronaut  antenna.  As 
a result,  no  height-gain  correction  factor in the  transmission  loss is required  in  the 
circuit  margin  calculation  for  the  bending-over  and lying-down  positions.  The free- 
space  gains  ranged  from  -30  to +1 decibels,  referenced  to a perfect  isotropic of ver-  
tical  polarization. 

Manned Spacecraft  Center 
National  Aeronautics  and  Space  Administration 

Houston,  Texas,  December  16, 1968 
914-50-50-09-72 
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TABLE I. - ABSOLUTE GAINS OF APOLLO ASTRONAUT  BACKPACK  ANTENNA 

I Frequency, 
MHz 

t- 259.7 

279.0 

296.8 

Absolute  gain  referenced  to  vertical  isotropic  level,  dB 

Reflection  effects  included I 
Bending over I Lying face down I Free space 

Standing 

0 

+2 

0 

-2 8 -8 -15 

-25 -6 - 14 

-2 5 -8 -15 

-22 -0.5 

- 
Av - 

-5 

-4 

- 

-5 

- 
Min. 

-2 6 

-30 

-2 8 

a The  gains  were  obtained by using  the  standard-gain  dipole  at  the 6-foot standing  level  and by using 
2 decibels  for the gain of the  dipole  over  the  isotropic  level. 



I 1 Antenna 

indicator DI  c c  /nnc 

Signa I 
generator 6-dB pad 

Clear area 
outside  bldg 14 

Figure 1. - The VSWR test setup. 
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radiating 
a10.5 in.- r Top of helmet 

Figure 2. - Antenna  mounting  on  the OPS. 
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Figure 3 .  - Antenna  pattern  setup. 
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Figure 4. - The VSWR versus frequency. 
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Figure 5. - Pattern  coordinate  system. 
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0" 

:70° 

The  gains  are  referenced  to  a  perfect  isotropic  level of vertical- 
linear  polarization  established by substitution  of a reference 
dipole for the  backpack antenna. 

(a) Standing position and f = 259 .7  MHz. 

Figure 6 .  - Apollo astronaut  monopole  antenna  pattern  with  surface 
reflection  included. 
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90 

0" 

70" 

(b) Bending-over  position  and f = 259.7 MHz. 

Figure 6. - Continued. 
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0" 

90 a 

180" 
The  gains  are  referenced  to a perfect  isotropic  level of vertical-. 

linear  polarization  established  at  the 6-foot standing  height  by 
substitution of a  reference  dipole. 

( c )  Lying-face-down  position and f = 259 .7  MHz. 

Figure 6 .  - Continued. 

70"  
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-cp 
0" 

70" 

180" 
The gains are referenced  to a perfect  isotropic  level of vertical- 

linear  polarization established by substitution of a reference 
dipole for the  backpack antenna. 

(d)  Standing  position  and f = 279.0 MHz. 

Figure 6. - Continued. 
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0" 

90 O 

The  gains  are  referenced  to  a  perfect  isotropic  level  of  vertical- 
linear  polarization  established  at  the  6-foot  standing  height by 
substitution of a  reference  dipole. 

(e) Bending-over  position and f = 279.0 MHz. 

Figure 6.  - Continued. 

70" 
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0" 

180" 
The gains  are  referenced to  a  perfect  isotropic  level  of  vertical- 

linear  polarization  established  at  the  6-foot  standing  height by 
substitution  of  a  reference  dipole. 

(f) Lying-face-down  position  and f = 279.0 MHz. 

Figure 6. - Continued. 
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0" 

90' 

The  gains are referenced  to  a  perfect  isotropic  level of vertical- 
linear  polarization  established  by  substitution of a  reference 
dipole  for  the  backpack  antenna. 

(g) Standing position and f = 296.8 MHz. 

Figure 6.  - Continued. 

70"  
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0" 

70" 

180" 
The  gains  are  referenced  to  a  perfect  isotropic  level  of  vertical- 

linear  polarization  established  at  the  6-foot  standing  height by 
substitution of a  reference  dipole. 

(h) Bending-over  position and f = 296.8 MHz. 

Figure 6 .  - Continued. 
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90 

-a 
0" 

70"  

180" 
The  gains  are  referenced  to  a  perfect  isotropic  level  of  vertical- 

linear  polarization  established  at  the  6-foot  standing  height by 
substitution  of  a  reference  dipole. 

(i) Lying-face-down  position and f = 296.8 MHz. 

Figure 6 .  - Concluded. 
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90 

= 180" 

90" 

180" 

(a) f = 259.7 MHz. 

Figure 7. - Free-space Apollo astronaut  monopole  antenna  pattern.  The 
gains are referenced  to a perfect  isotropic  level of vertical-linear 
polarization  established by substitution of a standard-gain  dipole. 
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= 180" 

90" 

180" 

(b) f = 279.0 MHz. 

Figure 7.  - Continued. 
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20 

cp = 180" 

90" 

180" 

( c )  f = 296.8 MHz. 

Figure 7. - Concluded. 


